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Ridged Waveguides with Inhomogeneous
Dielectric-Slab Loading

GOTTFRIED MAGERI., MEMBER, IEEE

Abstract—-The dispersion equation of the ridged waveguide with inho-
mogeneous diclectric-slab loading is derived. Numerical resuits for the
cuteff frequencies of the three lowest order TE,,, modes are given which
substantiate the feasibility of the modal expansion and field-matching
technique employed. For a Teflou-siab loaded ridged waveguide, a 40-per-
cent decrease of dominant-mode cutoff frequency, simultaneously provid-
ing 20-percent enhanced TE,;,-mode separation compared to an empty
ridged waveguide, is demonstrated.

I. INTRODUCTION

E; MPTY RIDGED waveguides are in wide use because
« of their low cutoff frequency and considerable band-
width of the dominant mode. Usually the cutoff frequen-
cies are calculated employing a transverse resonance
method [1]-[5] based on an equivalent circuit of two
cascaded transmission lines of different wave impedances.
The field distortions caused by the abrupt change of the
waveguide’s height are accounted for by a shunt capaci-
tance between the connecting terminals of the transmis-
sion lines in the equivalent circuit. Values for this capaci-
tance can be found in [6] and [7].

The transverse resonance method, however, is not im-
mediately applicable to inhomogeneously dielectrically
loaded ridged waveguides, due to the lack of values for
the fringing capacitances. Other powerful methods seem-
ingly capable for the solution of this problem are failing
too; conformal mapping fails for a change of media at the
waveguide’s step [8], and the use of the theory of singular
integral equations [9}-{11] is restricted to integrally related
step ratios [8].

As ridged waveguides with inhomogeneous dielectric
loading seemed promising for obtaining still greater band-
width than ordinary ridged guides, a general solution of
this propagation problem which is presented in this paper
was sought. The technique employed is a refinement and
combination of modal expansion and transverse field
matching [7]-[12]. Numerical results for the cutoff
frequencies of the three lowest order TE, 4 modes are
calculated to establish the feasibility of the method. A
drastic decrease of the cutoff frequency of the dominant
mode, simultaneously providing substantially enhanced
TE,,-mode separation in comparison with empty ridged
waveguides, is demonstrated.
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Fig. 1. Cross section of ridged waveguide with inhomogeneous dielec-

tric-slab loading.

II. FIiELD IDESCRIPTION

In this section the dispersion equation for TE,,, modes
will be derived. The electromagnetic (EM) field compo-
nents of the TE, ; modes in the slab-loaded ridged wave-
guide shown in Fig. 1 can be described by a linear
combination of the undisturbed TE, ,-mode pattern of a
slab-loaded rectangular waveguide and of higher order TE
modes. This concept was implemented for both regions I
and II of the cross section (Fig. 1). Reflection of the
higher order modes from the waveguide walls, the reason
for “proximity effects™ [2], is accounted for by choosing
hyperbolic functions to describe the x dependence of
these modes.

For region I of the cross section (~ a’ < x <0 in Fig. 1),
the field components can be written as’'

Exl=w“’1Hyl/kz=El exp (~jkzz)

3 (ko Gt/ L) R, 512 (5,48 s (k1)

. cos
E, = —wu H,,/k,=E, exp (“]kzz)[ sin (kaéi)
+ ; Cann;Orfl,lll (rnlgl) cos (kyly):l
Ezl =0
H, =(1/jom)E, exp (“jkzz)[kxl Sllt:os (kb))

sinh
+ k)%l % (Cnl/rnl)RnCOSh (T',.¢,) cos (kyly):!' (1)

IIn this notation, the symmetric modes (m odd) are described by the
upper symbols for the trigonometric and hyperbolic functions, whereas
the lower symbols apply to the antisymmetric modes (m even).
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The components of the EM field in region I of the
cross section (0< x < (a—a’)/2) are described by

Eo=wp,H,/ k.= — E, exp (—jk,2)
: 2 (ky2cn2/rn2) Tn COSh (rn2£2) Sin (kyZy)

Ey2 == wnu'ZHxZ/kz = E2 €xXp (_jkzz)[Sin (kx2§2)

+ > C,T, sinh (T ,£,) cos (k,, y)]
E22= 0

H,,=(1/jwuy) E, exp (_jkzz)i:ka cos (k%)

K3 (Ca/ DT, cosh (L) o5 (527) | )

where  is the angular frequency, and ¢ and p, are the
permittivity and the permeability of the inner (i=1) and
the outer (i=2) parts of the cross section, respectively.
The quantities E, stand for the amplitudes of the complete
mode pattern, whereas the R,’s and T,’s are the ampli-
tudes of the higher order TE modes. The §’s and the C,;’s
are abbreviations for

¢ =x+a/2
L=—x+(a—a)/2
Cur= gin (ki /2)/ SO (T 0 /2)
b sin [ k(a—a’)/2]

2= sinh [To(a—a)/2]’ @

and

€)

The symbol k, denotes the (real) propagation constant of
the complete mode; k,, are the wavenumbers in the x
direction of the undisturbed parts of the mode pattern,
whereas I',; and k,, are the wavenumbers of the higher
order TE modes in the x and y direction, respectively.
Introducing the field components (1) and (2) into
Maxwell’s equations yields the separation conditions

2 __ 2 1.2
kxi_weinu‘i kz

2 =ki+k—wp, =12 %)

Whenever k2> w’, i, applies, the wavenumber k, has to
be replaced by jlk,,|, giving rise to an aperiodic field
distribution in (2).

Now we match the inner and outer tangential field
components at x=0; the cosines cos (k,y) appear in the
series terms of the matching equations. Since the wave-
numbers k,; are given by

ko =2nm /b
ky=2nm /b (6)

where » is an integer, and b’ and b are the heights of the
inner and outer parts of the waveguide’s cross section
according to Fig. 1, the outer fields may be interpreted as
a Fourier expansion of the inner fields at the x=0 inter-
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face [7]. Evaluation of the lowest order Fourier coefficient
(corresponding to the undisturbed part of the electric
field) leads to

b g (kad'/2)
sin
Ey=— E,.
bsin [ k(a—a’)/2]
Introducing this equation into the EM field components
() and (2), the remaining Fourier coefficients of the
electric field can now be calculated to get

)

T, =2a sinc (nma) +a X, R, {sinc [ (j+ na)7]
J

+sinc [(j—na)7]} (8)

where the definitions a=5"/b and sinc (x)=sin (x)/x
have been used. The next step is to determine the higher
order mode amplitudes by applying a corresponding
Fourier expansion to the magnetic field components at
x=0

Rj == ( H1k§2/ﬂzkf1)rjl f;fﬁ (rjla’/z)
- 2 (T /T},) coth [sz(a_ a’)/2]
k

-{sinc [ (j+ ka)7 ] +sinc [ (j — ka)7]}. )

Introducing (9) into (8) yields
T, =2a sinc (nma) — (pikly/ pok) % Ty ::1?}11 (I’ﬂa’/?.)
-{sinc [ (j+na)m ] +sinc [ (j— na)7]}
: % (T:/Tyo) coth [Ty,(a—a’)/2]

-{sinc [(j+ ka)7 ] +sinc [ (j—ka)7]}. (10)

Equation (10) is well suited for an iterative evaluation of
the 7,’s. Starting with a set of T ,4=2a sinc (kwa), a
new set of 7, can be calculated and reinserted into (10).

Finally, we derive an expression corresponding to (7)
for the undisturbed part of the magnetic field, both for m
odd

(paker/ k) tan (k ,a'/2)—a cot [ k(a— a’)/2]
+k 2 (T, /T ) coth [T,5(a—a’) /2] sinc (nma)=0
' (11a)
and for m even
(pokyy/ 1ik,,) cot (k@' /2)+ a cot [kxz(a— a’)/2]
- ng (T,/T,,) coth [T,,(a—a’)/2] sinc (nma) =0.
(11b)

Equations (11) may be interpreted as dispersion equations
and have to be solved simultaneously with (5), (6), and
(10) for allowed sets of propagation constants and wave-
numbers at a given frequency.
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Using the results of Section I, the cutoff frequencies of
the three lowest order TE,, modes were calculated by
setting k, =0 and solving (5), (6), (10), and (11). Since the
TE,, modes will not be the first higher modes in every
case, a brief discussion of moding effects is appropriate.
In the limit of the dielectric-slab loaded waveguide with
an aspect ratio of 5/a=0.5, the distorted TM,; mode was
shown to restrict the bandwidth close to the empty-wave-
guide value of 2 [13]. However, ridges of even modest
depth protruding into the waveguide will short circuit the
E, component of the distorted TM;; mode. In this case,
the usable bandwidth will be limited by the distorted TE,
mode which was found to be the first higher order mode
in the empty ridged waveguide [10]. The cutoff wave-
length A, of this mode is mainly determined by the wave-
guide height b according to A,~2b. Thus propagation of
the distorted TE,, mode (and of the distorted TM,, mode,
toc) can be deferred by reducing the waveguide height,
and the TE,, will be the first higher order mode to limit
the usable bandwidth. Whenever a reduction of the wave-
guide height is undesirable, a mode filter is conceivable;
thin metallic fins protruding horizontally at y=0 into
region II of the waveguide’s cross section will short-circuit
any x- and z-electric field components, thus suppressing
both the distorted TM,, and TE,,. The TE,, modes, of
course, will not be affected by this mode filter. Therefore,
and because a complete modal analysis was not intended,
we restricted ourselves to the calculation of the TE,-
cutoff frequencies. This proceeding facilitates direct com-
parison of our results with [4].

For the numerical analysis, let the ridged waveguide
have an aspect ratio of b/a=0.5, and let a Teflon slab
(,,=2.05) of cross-sectional dimensions «’ and b’ be
placed inside the gap between the ridges, whereas the
ouler parts of the waveguide’s cross section remain empty
(e,,=1). For the computation, the gap width a’ (0<a’' <a)
and the height of the gap b (0.16<b'<b) served as
parameters.

Fig. 2(a) shows the cutoff wavelength A, of the domi-
nant TE,, mode normalized to the waveguide broad di-
mension. Comparison of the graphs of Fig. 2(a) with the
results for empty ridged waveguide [4] shows a 40-percent
increase in cutoff wavelength. However, the cutoff wave-
length of the next TE,, mode, the TE,,” is not increased
by the same amount. Therefore, the dielectric loading
increases the TE,,-mode separation by about 20 percent
(Fig. 2(b)). It should be mentioned that the general shape
of Hopfer’s graphs [4] is not affected by the slab loading.
The starting points of all graphs at «’=0, representing a
fin-line structure, are independent of €,; and are therefore
identical with those given in [4]. Furthermore, the maxi-
mum dominant-mode cutoff wavelength still occurs at
a' =0.5a (Fig. 2(a)). The maximums of the TE,;mode
separation graphs (Fig. 2(b)), however, are shifted to

CUTOFF FREQUENCIES—NUMERICAL RESULTS

2The cutoff frequency of the TE,, mode was calculated to be some-
what higher than that of the TE,q in all cases.
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Fig. 2. Gap-width dependence of (a) cutoff wavelength A, of the
dominant TE,, mode normalized to the waveguide broad dimension a,
and of (b) TE,;-mode separation A.;y/A 0. The results for a Teflon-
slab loaded ridged waveguide (¢,;=2.05, ¢,=1) are represented by
solid lines, whereas the dashed curves show Hopfer’s graphs [4] for the
empty ridged guide (b'/b=0.1).

lower values of &’; optimum bandwidth with regard to
TE,, occurs at a’=0.23a. Whenever propagation of the
TE,, mode is suppressed due to H,;-mode excitation or to
the use of mode filters, the dominant-mode bandwidth,
now limited by the TE;, mode, will be somewhat higher.
However, maximum bandwidth with respect to TEs, is
achieved for a’=0.4a compared to a’=0.5a in the empty-
guide case [1].

An increase of the dielectric constant €, boosts the
cutoff wavelength of the dominant mode. Optimum values
of this wavelength occur at a’=0.54 independently of €,
and are shown in Fig. 3(a). Even more important, the
TE,;-mode separation can be increased, too, which is
illustrated in Fig. 3(b). Optimum ridge width a’ is reduced
from a’=0.27a for the empty guide to a’=0.14a for one
loaded with an alumina slab (e, = 10). Consequently, for a
given dielectric material, one has to tailor the guide either
for low cutoff frequency (a’=0.5a) or for optimum TE,;-
mode separation (0.14a < a’ <0274, depending upon ¢,)).
For optimum results in ecither case, the gap height b’
should be chosen as small as dielectric breakdown per-
mits. We want to emphasize, however, that even a modest
ridge of, say, b’=0.5h will be superior to the dielectric-
slab loaded waveguide (b’=b) with respect to low cutoff
frequency and TE,,-mode separation.

IV. VERIFICATION OF COMPUTATIONAL METHOD

Computational ability and numerical accuracy of the
modal expansion and field-matching technique presented
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Fig. 3. Gap-height dependence of (a) maximum TE,s-cutoff wave-
length A jg, max Normalized to the waveguide broad dimension a, and
of (b) maximum TE,;-mode separation (A.;0/Ac20)max- The permittivity
€,1 serves as parameter, €, = 1. Note that maximum TE,j-cutoff wave-
length occurs at a’/a=0.5 independent of ¢, whereas maximum
TE,g-mode separation is achieved for a'/a=0.14---0.27, depending
on g,.

here was tested by evaluating the TE,,,-cutoff frequencies
for several well-known special cases. As a first check, the
cutoff frequencies of the homogeneously filled conven-
tional rectangular waveguide were exactly obtained by
approaching the limit a’=a and b'=b. Next, the corre-
sponding values for the dielectric-slab loaded waveguide
were computed by setting @’#a and »'=b. In this case,
too, results identical to previous calculations [14] were
obtained. Finally, the cutoff frequencies of the dominant
mode of the empty ridged wavegnide were computed
depending upon a’s*a and b'#b by choosing ¢,,=1.
Comparison of the values obtained by our method with
values previously tabulated in [5] showed a consistency to
within 0,02 percent by employing only five higher order
modes, the amplitudes of which were computed in six
iterative steps according to (10). Of course, for the dielec-
tric-slab loaded ridged waveguide, such checking oppor-
tunities do not exist. Still, for both degenerate cases—the
fin-line structure (a’=0) and the uniformly filled wave-
guide (a'=a)—the cutoff frequencies approached the
well-known values [4] independent of ¢,,. It follows that
the method presented here gives reliable results, even with
the consideration of as few as five higher order modes.
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V. CONCLUSIONS

The dispersion relation of the TE,; modes in the inho-
mogeneously dielectric-slab loaded ridged waveguide was
derived for the first time. Numerical results for this guide
substantiated the expectation of prominent differences to
the empty ridged waveguide: 1) enhancement of cutoff
wavelength, and 2) increase of TE,j;-mode separation.
Also, the ridged guide presented here was shown to be
superior to the slab-loaded rectangular waveguide praised
as a high-bandwidth device in [15]. Moreover, our ap-
proach should prove useful for the investigation of the
step discontinuity of the parallel plate line with simulta-
neous change of media. Such lines were recently proposed
as equivalent models for the calculation of fringing field
effects in edge-guided wave devices [16].
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