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Abstract—Tbe dispemion equation of the ridged wavegrdde with inho-
mogeneous dielectric-slab Ioadmg is derived. Numerical results for the

cutoff frequencies of the three lowest order TE~O modes are given which
substantiate the feaaibfity of tbe modal expansion and field-ruatcbing
technique employed. For a Teflon-slab 10MW ridged wavegwid~ a 40-per-
cent deereaae of dominant-mode cutoff frequency, simuftanemrdy provid-
ing 20-percent enhanced ~O-mode separation compared to an empty

ridged waveguide, is demonstrated.

I. IPITRODUCTION

E)MPTY RIDGED waveguides are in wide use because

4 of their low cutoff frequency and considerable band-

width of the dominant mode. Usually the cutoff frequen-

cie~ are calculated employing a transverse resonance

method [1 ]–[5] based on an equivalent circuit of two

cascaded transmission lines of different wave impedances.

The field distortions caused by the abrupt change of the

waveguide’s height are accounted for by a shunt capaci-

tance between the connecting terminals of the transmiss-

ion lines in the equivalent circuit. Values for this capaci-

tance can be found in [6] and [7].

The transverse resonance method, however, is not im-

mediately applicable to inhomogeneously dielectrically

loaded ridged waveguides, due to the lack of values for

the fringing capacitances. Other powerful methods seem-

ingly capable for the solution of this problem are failing

toc~; conformal mapping fails for a change of media at the

waveguide’s step [8], and the use of the theory of singular

integral equations [9]–[ 11] is restricted to integrally related

step ratios [8].

14s ridged waveguides with inhomogeneous dielectric

loading seemed promising for obtaining still greater band-

width than ordinary ridged guides, a general solution of

this propagation problem which is presented in this paper

was sought. The technique employed is a refinement and

combination of modal expansion and transverse field

m21tChing [7]–[ 12]. Numerical resuhs for the cutoff

frequencies of the three lowest order TE~O modes are

calculated to establish the feasibility of the method. A

drastic decrease of the cutoff frequency of the dominant

mc)de, simultaneously providing substantially enhanced

TEzO-mode separation in comparison with empty ridged

waveguides, is demonstrated.
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Fig. 1. Cross section of ridged waveguide witl inhornogeneous dielec-

tric-slab loading.

In this section the dispersion equation for TE~O modes

will be derived. The electromagnetic (EM) field compo-

nents of the TE~O modes in the slab-loaded ridged wave-

guide shown in Fig. 1 can be described by a linear

combination of the undisturbed TE~O-mode pattern of a

slab-loaded rectangular waveguide and of higher order TE

modes. This concept was implemented for both regions I

and 11 of the cross section (Fig. 1). Reflection of the

higher order modes from the waveguide walls, the reason

for “proximity effects” [2], is accounted for by choosing

hyperbolic functions to describe the ~c dependence of

these modes.

For region I of the cross section ( – a’ < x <0 in Fig. 1),

the field components can be written asl

EX1=~plHyl/kz = E, exp (–jk,z)

‘inh(rnlgl ) sin (kYl Y“ ~ (kY&.~/r.,)R.cosh )
n

Eyl= –tipiHX1/kz= El exp (–jkzz)
[

;; (kx,t,)

‘In this notation, the symmetric modes (m odd” are descfibed by the

uPPer symbols for the trigonometric and hyperbolic functions, whereas
the lower symbols apply to the antisynnnetric modes (m even).
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The components of the EM field in region 11 of the

cross section (O< x <(a – a’)/2) are described by

Exz = tipzHy2/kZ = – E2 exp ( –jk,z)

“ Z (kyICnI/rnz)T. cosh (F.,Q sin (kyzy)
n

[
EY2= – tip2HX2/kz = Ez exp ( –jk=z) sin (kX2&)

+ ~ Cn2Tn skh (rn2t2) COS (kY2.Y)
n 1

EZ2= O

[
HZ2 = (1/jtip2)Ez exp ( –jkzz) kX2 cos (kX2$2)

1
– k;z z (CnI/r.J T. cosh (rn&) cos (kyzy) (2)

n

where o is the angular frequency, and Ci and pi are the

permittivity and the permeability of the inner (i= 1) and

the outer (i= 2) parts of the cross section, respectively.

The quantities E, stand for the amplitudes of the complete

mode pattern, whereas the Rn’s and Tn’s are the ampli-

tudes of the higher order TE modes, The &i’s and the C.i’s

are abbreviations for

.$l =x+ a’/2

&2=–x+(a–a’)/2 and (3)

Cn, = ;: (kX1a’/2)/ :;~h (17n1a’/2)

b sin [ kX2(a – a’)/2]

cn2= b’ sinh [r.2(a – a’)/2] “
(4)

The symbol k= denotes the (real) propagation constant of

the complete mode; kXZ are the wavenumbers in the x

direction of the undisturbed parts of the mode pattern,

whereas r.i and kyi are the wavenumbers of the higher

order TE modes in the x and y direction, respectively.

Introducing the field components (1) and (2) into

Maxwell’s equations yields the separation conditions

k:i = ti2eipi – k;

r;, = k;i + k2 – ti2e.pi,z I i=l,2. (5)

Whenever k;> U2e2pz applies, the wavenumber kX2 has to
be replaced by ~lkX21, giving rise to an aperiodic field

distribution in (2).
Now we match the inner and outer tangential field

components at x = O; the cosines cos (kyy) appear in the

series terms of the matching equations. Since the wave-

numbers kyi are given by

~1=2nn-/b’k

,2=2nr/bk (6)

where n is an integer, and b’ and b are the heights of the

inner and outer parts of the waveguide’s cross section

according to Fig. 1, the outer fields may be interpreted as

a Fourier expansion of the inner fields at the x = O inte~-

face [7]. Evaluation of the lowest order Fourier coefficient

(corresponding to the undisturbed part of the electric

field) leads to

~~~ (kX,a’/2)

E2 = El.
b sin [ kX2(a – a’)/2]

(7)

Introducing this equation into the EM field components

(1) and (2), the remaining Fourier coefficients of the

electric field can now be calculated to get

T. =2a sine (mm)+ a ~ Rj {sine [(j+ na)~]
J

+sinc [(j–na)n] } (8)

where the definitions a = b’/b and sine (x)= sin (x)/x

have been used. The next step is to determine the higher

order mode amplitudes by applying a corresponding

Fourier expansion to the magnetic field components at
X=o

Rj = – ( p1k;2/p2k:,)r,l ::~ (r~]a’/2)

. ~ (Tk/rk2) coth [r,,(a-af)/2]

. ~inc [(j+ ka)~] +sinc [(j- ka)~]}. (9)

Introducing (9) into (8) yields

j ‘ ;::(r’’a’/2)
T.= 2a sine (mm) – ( p1k~2/p2k~1) ~ I’.l

. {sine [(j+ na)m] +sinc [(j- na)m]}

. ~ (T./r.2) cOth [rk,(~- d)/2]

.{sinc [(j+ ka)n] +sinc [(j-ka)~]}. (lo)

Equation (10) is well suited for an iterative evaluation of

the T.’s. Starting with a set of T~, ~ld= 2a sine (km), a

new set of T. can be calculated and reinserted into (10).

Finally, we derive an expression corresponding to (7)

for the undisturbed part of the magnetic field, both for m

odd

( P~kx,/P,kxz) tan (kx,a’/2)- a COt [k.2(a-a’)/2]

+ k~I ~ ( Tn/rnz) coth [ r.z(a – a’)/2 ] sine (mm)= O
n

(ha)

and for m even

(PIkx~/P~kxz) COt (kxIa’/2)+ a COt [L2(u4W]

–k.22 ( Vrn2) Coth [rn2(a – ~’)/2] Sine (~~~) = 0.
n

(llb)

Equations (11) may be interpreted as dispersion equations

and have to be solved simultaneously with (5), (6), and

(10) for allowed sets of propagation constants and wave-

numbers at a given frequency.
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HI. CUTOFF FREQUENCIES-NUMEMC& RESULTS

IJsing the results of Section II, the cutoff frequencies of

the three lowest order TE~O modes were calculated by

setting kZ = O and solving (5), (6), (10), and (11). Since the

TE,nO modes will not be the first higher modes in every

case, a brief discussion of moding effects is appropriate.

In the limit of the dielectric-slab loaded waveguide with

an aspect ratio of b/a= 0.5, the distorted TM I ~ mode was

shown to restrict the bandwidth close to the empty-wave-

guide value of 2 [13]. However, ridges of even modest

depth protruding into the waveguide will short circuit the

Ey component of the distorted TMI, mode. In this case,

the usable bandwidth will be limited by the distorted TEOI

mode which was found to be the first higher order mode

in the empty ridged waveguide [10]. The cutoff wave-

length & of this mode is mainly determined by the wave-

guide height b according to &z2b. Thus propagation of

the distorted TEOI mode (and of the distorted TMl ~ mode,

too) can be deferred by reducing the waveguide height,

and the TEZO will be the first higher order mode to limit

the usable bandwidth. Whenever a reduction of the wave-

guide height is undesirable, a mode filter is conceivable;

thin metallic fins protruding horizontally at y = O into

region II of the waveguide’s cross section will short-circuit
any ~. and z-electric field components,thus suppressing

bo~:h the distorted TMI ~ and TEOI. The TE~O modes, of

course, will not be affected by this mode filter. Therefore,

and because a complete modal analysis was not intended,

we restricted ourselves to the calculation of the TE~o-

cutoff frequencies. This proceeding facilitates direct com-

parison of our results with [4].

For the numerical analysis, let the ridged waveguide
have an aspect ratio of b/a= f).5, and let a Teflon slab

(C,I = 2.05) of cross-sectional dimensions a’ and b’ be

placed inside the gap between the ridges, whereas the

oukr parts of the waveguide’s cross section remain empty

(c,:, = 1). For the computation, the gap width a’ (O< a’ < a)

and the height of the gap b’ (O.1b < b’ < b) served as

parameters.

IFig. 2(a) shows the cutoff wavelength ACIOof the domi-

na:nt TEIO mode normalized to the waveguide broad di-

mension. Comparison of the graphs of Fig. 2(a) with the

results for empty ridged waveguide [4] shows a 40-percent

increase in cutoff wavelength. However, the cutoff wave-

length of the next TE~o mode, the TE20? is not increased

by the same amount. Therefore, the dielectric loading

increases the TEzo-mode separation by about 20 percent

(Fig. 2(b)). It should be mentioned that the general shape

of Hopfer’s graphs [4] is not affected by the slab loading.

The starting points of all graphs at a’= O, representing a

fin-line structure, are independent of e,l and are therefore

identical with those given in [4]. Furthermore, the maxi-

mum dominant-mode cutoff wavelength still occurs at

a’+ 0.5a (Fig. 2(a)). The maximums of the TE20-mode

separation graphs (Fig. 2(b)), however, are shifted to

8

7

6

5

4

3

2
0 0.2 0.4 0.6 08 1.0
PJORMALIZED GAP WIDTH <l<]

(a)

NORMALIZED GAP WIDTH a’la

(b)

Fig, 2. Gap-width dependence of (a) cutoff wavelength ACIO of the
dominant TEIO mode normalized to the waveguide broad dimension a,

and of (b) T~o-mode separation AC10/AC2& The results for a Teflon-

slab loaded ridged waveguide (6,1=2.05, C,2 = 1) are represented by

solid lines, whereas the dashed curves show Hopfer’s graphs [4] for the

empty ridged guide (b/b = O.1).

lower values of a’; optimum bandwidth, with regard to

TEZO occurs at a’= 0.23a. Whenever propagation of the

TE20 mode is suppressed due to Hlo-mode excitation or to

the use of mode filters, the dominant-mode bandwidth,

now limited by the TE30 mode, will be somewhat higher.

However, maximum bandwidth with respect to TE30 is

achieved for a’= 0.4a compared to a’= 0.5a in the empty-

guide case [1].
An increase of the dielectric constant .ql boosts the

cutoff wavelength of the dominant mode. Optimum values

of this wavelength occur at a’+ 0.5a independently of 6,1

and are shown in Fig. 3(a). Even more important, the

TEzO-mode separation can be increased, too, which is

illustrated in Fig. 3(b). Optimum ridge width a’ is reduced

from a’+ 0.27a for the empty guide to a’= O.14a for one

loaded with an alumina slab (e,l = 10). Consequently, for a

given dielectric material, one has to tailor the guide either

for low cutoff frequency (a’ = 0.5a) or for optimum TE20-
mode separation (O.14a < a’ < 0.27a, depending upon 6,1).

For optimum results in either case, the gap height b’

should be chosen as small as dielectric breakdown per-

mits. We want to emphasize, however, that even a modest

ridge of, say, b’= 0.5 b will be superior to the dielectric-

slab loaded waveguide (b’= b) with respect to low cutoff

frequency and TE20-mode separation.

IV. VERIFICATION OF COMP~ATIONAL METHOD

‘The cutoff frequency of the TE30 mode was calculated to be some-
Computational ability and numerical accuracy of the

what higher than that of the T~O in afl cases. modal expansion and field-matching technique presented
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3%4 F.KXMALIZED GAP HEGHT If/b

Fig. 3. Gap-height dependence of (a) maximum TEIO-cutoff wave-
length ~lo ~= normalized to the waveguide broad dimension a, and
of (b) mr&mum T~O-mode separation (XCIO/!C20)mm. The permittivity

%1 serves as parameter, C,2= 1. Note that mammum TEIO-cutoff wave-
length occurs at a’/a = 0.5 independent of E,l, whereas maximum

T&O-mode separation is achieved for a’/a = 0.14 ~..0.27, depending

on C,l.

here was tested by evaluating the TE~o-cutoff frequencies

for several well-known special cases. As a first check, the

cutoff frequencies of the homogeneously filled conven-

tional rectangular waveguide were exactly obtained by

approaching the limit a’= a and b’= b. Next, the corre-

sponding values for the dielectric-slab loaded waveguide

were computed by setting a’ # a and b’= b. In this case,

too, results identical to previous calculations [14] were

obtained. Finally, the cutoff frequencies of the dominant

mode of the empty ridged waveguide were computed

depending upon a’+ a and b’ # b by choosing e,l = 1.

Comparison of the values obtained by our method with

values previously tabulated in [5] showed a consistency to

within ~ 0,02 percent by employing only five hi~er order
modes, the amplitudes of which were computed in six

iterative steps according to (10). Of course, for the dielec-

tric-slab loaded ridged waveguide, such checking oppor-

tunities do not exist. Still, for both degenerate cases—the

fin-line structure (a’ = O) and the uniformly filled wave-

guide (a’ = a)—the cutoff frequencies approached the

well-known values [4] independent of C,l. It follows that

the method presented here gives reliable results, even with

the consideration of as few as five higher order modes.

V. CONCLUSIONS

The dispersion relation of the TE~O modes in the inho-

mogeneously dielectric-slab loaded ridged waveguide was

derived for the first time. Numerical results for this guide

substantiated the expectation of prominent differences to

the empty ridged waveguide: 1) enhancement of cutoff

wavelength, and 2) increase of TE&o-mode separation.

Also, the ridged guide presented here was shown to be

superior to the slab-loaded rectangular waveguide praised

as a high-bandwidth device in [15]. Moreover, our ap-

proach should prove useful for the investigation of the

step discontinuity of the parallel plate line with simulta-

neous change of media. Such lines were recently proposed

as equivalent models for the calculation of fringing field

effects in edge-guided wave devices [16].
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